
Delivering precision position, navigation, and timing solutions

- Founded in 2004 to spin-off work from Stanford University
- Core capability is design, fabrication, and testing of atomic clocks and inertial sensors
- 60k ft² R&D space located in Sunnyvale, CA.
- Staff of 52 (50/50 mix of physicists and engineers)
 - One of the world's largest atomic physics teams under one roof; 22 Ph.D.s trained under 7 Nobel laureates
 - Technical capabilities: Atomic physics, laser physics, vacuum engineering, packaging, optical and optomechanical engineering, precision manufacturing, electrical engineering, embedded systems, software engineering

Atom-optical devices set the standard for precision and accuracy

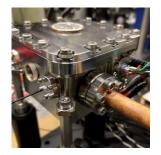
Sir latetion clock $3\times10^{-16}/ au^{1/2}$

Colr0 practing partition wetter 1×10^{-11} g/Hz $^{1/2}$

The hipadada macely gy oo $2 \times 10^{-6} \text{ deg/hr}^{1/2}$

- Lab-based atomic sensors set the standard for measurement
 - e.g. Sr Lattice clock, 10 m drop tower, Thermal beam accel/gyro
- Current lab-based atomic sensors are impractical for deployment
 - Large overhead for preparing, addressing, and reading out atomic states; vacuum, lasers, low-noise electronics, grad students
- Solution: Partially trade performance for utility/simplicity
 - Identify practical/robust components; develop custom components, as necessary

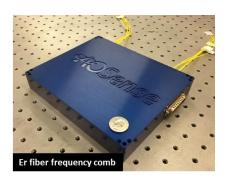
Coherent imaging requires precise timing and location

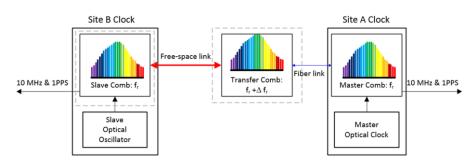

- Physicist's perspective: Constructive/destructive interference requires temporal/spatial precision
 - Relative positioning between apertures/Stability over imaging time
 - Position $\Delta x \sim \lambda/10$; Jitter/Synchronization $\Delta t \sim 1/10v$
 - @ 1 GHz: $\Delta x \sim 30$ cm, $\Delta t \sim 100$ ps
 - @ 300 THz: $\Delta x \sim 100$ nm, $\Delta t \sim 0.3$ fs
- Better clocks/synchronization support longer integration time
 - For higher frequencies, GPS is not good enough; $\Delta x \sim 10$ m, $\Delta t \sim 10$ ns
- IMU's can provide position/orientation updates when apertures are moving

AOSense can provide enabling hardware for coherent imaging

- For Amon-Hen, AOSense can provide prime contractors highprecision timing, synchronization, and positioning for coherent/distributed apertures.
 - Long-holdover/low-phase noise microwave and optical frequency standards

Fractional frequency stability


Microwave: $< 10^{-12} t^{1/2}$


Optical: $< 10^{-14} t^{1/2}$

Microwave atomic clock

Integrated optical cavity

- fs-level synchronization via two-way optical time transfer using optical frequency combs

See NIST Scheme F. R. Giorgetta et. al, Nature Photonics 7, 434 (2013)

AOSense would love to join your team!

Jamil Abo-Shaeer, Ph.D.

Director, Strategic Planning

jaboshaeer@aosense.com (408) 636-2651

AOSense, Inc.

929 E. Arques Ave Sunnyvale, CA 94085 Main: (408) 735-9500

www.AOSense.com

